C.U.SHAH UNIVERSITY Summer Examination-2018

Subject Name: Discrete Mathematics

	Subject Code: 4SC05DMC1			Branch: B.Sc.(Mathematics)			
	Semester	r: 5	Date:31/03/2018	Time :10:30 To 01:30) Marks : 70		
 Instructions: (1) Use of Programmable calculator & any other electronic instrument is prohibited. (2) Instructions written on main answer book are strictly to be obeyed. (3) Draw neat diagrams and figures (if necessary) at right places. (4) Assume suitable data if needed. 							
Q-1		Define th	e terms:		(14)		
	a)	Equivalen	ce Relation.		(01)		
	b)	Partially o	order Relation.		(01)		
	c)	Chain.			(01)		
	d) e) f) g) h) i) j) k) l) m) n)	Maximal Lattice. Lattice as Sub lattice Complete Bounded Atom. Join – irre Boolean h Fuzzy sub	an algebraic system. e. lattice. lattice. ducible element. comomorphism.		(01) (01) (01) (01) (01) (01) (01) (01)		
Atte	mpt any f	four questi	ons from Q-2 to Q-8				
Q-2	a)	-		$\equiv b \pmod{m}$ is a equivalen	(14) t relation on the (05)		
	b)	Show that	x < N, D > is a partial or	ler set, where Ddivides relation	on. (05)		
	c)	Draw the	Hass diagram of $< S_{60}$, <i>I</i>) >.	(04)		
Q-3	1	Attempt	all questions		(14)		

a) If $\langle A, \leq_1 \rangle$ and $\langle B, \leq_2 \rangle$ be two Posets then prove that $\langle A \times B, \leq \rangle$ is Poset, (06)

Page 1 || 3

		where relation \leq defines by $(a, b) \leq (c, d)$ if $a \leq_1 c$ and $b \leq_2 d$ for $\forall (a, b), (c, d) \in A \times B$.		
	b) Prove that $\langle S_{30}, D \rangle$ is a lattice.			
	c)	Prove that least upper bound ofsubset of a Partially order set is unique.	(02)	
Q-4		Attempt all questions	(14)	
	a)	Let $< L$, $\leq >$ be a lattice and $a, b, c \in L$ then prove the following	(06)	
		(i) $a * b = b * a$		
		(ii) $a * (a \oplus b) = a$.		
		(iii) If $b \le c$ then prove that $a * b \le a * c$, $\forall a \in L$		
	b)	State and prove distributive inequality.	(06)	
	c)	Let $< L, \le >$ be a lattice and $a, b, c \in L$. If $a \le b \le c$ then prove that $a \oplus b = a * b$	(02)	
Q-5		Attempt all questions $u \oplus b = u * b$	(14)	
	a)	Obtain SOP canonical form of $\alpha(x_1, x_2, x_3) = x_1 \oplus (x_2 * x_3')$ in three variables.	(07)	
	b)	Express the Boolean expression $\alpha(x_1, x_2, x_3) = x_1 * (x_2 \oplus x_3)$ in a cube array method.	(05)	
	c)	Let $< L, *, \oplus, ', 0, 1 >$ is complemented distributive lattice. If $a, b \in L$ with $a \le b$ then prove that $a * b' = 0$.	(02)	
Q-6		State and prove Stone's representation theorem.	(14)	
Q-7		Attempt all questions	(14)	
	a)	Let $(L,*, \oplus, ', 0, 1)$ is complemented distributive lattice. If $a, b, c \in L$ then prove the following (i) $(a * b)' = a' \oplus b'$. (ii) $(a \oplus b)' = a' * b'$.	(06)	
	b)	If <i>a</i> , <i>b</i> are two different atoms of a Boolean algebra then prove that $a * b = 0$.	(04)	
	c)	Let $\langle B, *, \bigoplus, 0, 1 \rangle$ be a Boolean algebra. Then prove that non – element $a \in B$ is an atom of Bif and only if $a * x = 0$ or $a * x = a \forall x \in B$.	(04)	

Q-8		Attempt all questions	
	a)	Simplify the circuit given in following figure using Boolean identities.	(07)

b) Let $E = \{a, b, c, d, e\}, A = \{(a, 0.3), (b, 0.8), (c, 0.5), (d, 0.1), (e, 0.9)\},$ $B = \{(a, 0.7), (b, 0.6), (c, 0.4), (d, 0.2), (e, 0.1)\} \text{ then find the following:}$ $(i)_{\sim}^{B'} \quad (ii) A \cdot B \quad (iii) A \cdot B \quad (iv) A - B \quad (v) A \cap B \quad (vi) (A') (vii) A \cup B$

Page 3 || 3

